Localized Bases for Kernel Spaces on the Unit Sphere
نویسندگان
چکیده
Approximation/interpolation from spaces of positive definite or conditionally positive definite kernels is an increasingly popular tool for the analysis and synthesis of scattered data and is central to many meshless methods. For a set of N scattered sites, the standard basis for such a space utilizes N globally supported kernels; computing with it is prohibitively expensive for large N . Easily computable, well-localized bases with “small-footprint” basis elements—i.e., elements using only a small number of kernels—have been unavailable. Working on S2, with focus on the restricted surface spline kernels (e.g., the thin-plate splines restricted to the sphere), we construct easily computable, spatially well-localized, small-footprint, robust bases for the associated kernel spaces. Our theory predicts that each element of the local basis is constructed by using a combination of only O((logN)2) kernels, which makes the construction computationally cheap. We prove that the new basis is Lp stable and satisfies polynomial decay estimates that are stationary with respect to the density of the data sites, and we present a quasi-interpolation scheme that provides optimal Lp approximation orders. Although our focus is on S2, much of the theory applies to other manifolds—Sd, the rotation group, and so on. Finally, we construct algorithms to implement these schemes and use them to conduct numerical experiments, which validate our theory for interpolation problems on S2 involving over 150,000 data sites.
منابع مشابه
Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere
In this paper, we prove convergence results for multiscale approximation using compactly supported radial basis functions restricted to the unit sphere, for target functions outside the reproducing kernel Hilbert space of the employed kernel.
متن کاملMultiscale analysis for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere
In this paper, we prove convergence results for multiscale approximation using compactly supported radial basis functions restricted to the unit sphere, for target functions outside the reproducing kernel Hilbert space of the employed kernel.
متن کاملHeat Kernel Generated Frames in the Setting of Dirichlet Spaces
Wavelet bases and frames consisting of band limited functions of nearly exponential localization on R are a powerful tool in harmonic analysis by making various spaces of functions and distributions more accessible for study and utilization, and providing sparse representation of natural function spaces (e.g. Besov spaces) on R . Such frames are also available on the sphere and in more general ...
متن کاملDecomposition of Besov and Triebel – Lizorkin spaces on the sphere ✩
A discrete system of almost exponentially localized elements (needlets) on the n-dimensional unit sphere Sn is constructed. It shown that the needlet system can be used for decomposition of Besov and Triebel–Lizorkin spaces on the sphere. As an application of Besov spaces on Sn, a Jackson estimate for nonlinear m-term approximation from the needlet system is obtained. © 2006 Elsevier Inc. All r...
متن کاملRamadanov Conjecture and Line Bundles over Compact Hermitian Symmetric Spaces
We compute the Szegö kernels of the unit circle bundles of homogeneous negative line bundles over a compact Hermitian symmetric space. We prove that their logarithmic terms vanish in all cases and, further, that the circle bundles are not diffeomorphic to the unit sphere in Cn for Grassmannian manifolds of higher ranks. In particular they provide an infinite family of smoothly bounded strictly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2013